sage: V = VectorSpace(GF(2),8) sage: S = V.subspace([V([1,1,0,0,0,0,0,0]),V([1,0,0,0,0,1,1,0])]) sage: S.basis() [ (1, 0, 0, 0, 0, 1, 1, 0), (0, 1, 0, 0, 0, 1, 1, 0) ] sage: S.dimension() 2
KERNELS:
sage: M = MatrixSpace(IntegerRing(),4,2)(range(8)) sage: M.kernel() Free module of degree 4 and rank 2 over Integer Ring Echelon basis matrix: [ 1 0 -3 2] [ 0 1 -2 1]
MATRICI:
sage: R = IntegerModRing(51) sage: M = MatrixSpace(R,3,3) sage: A = M([1,2,3, 4,5,6, 7,8,9]) sage: A^1000*A^1007 [ 3 3 3] [18 0 33] [33 48 12] sage: A^2007 [ 3 3 3] [18 0 33] [33 48 12]